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Abstract

Knowing the exact number of passengers among the city
bus fleets allows public transport operators to optimally dis-
tribute their vehicles into the traffic. However, interpreting
overcrowded scenarios, at rush hour, with day/night illumi-
nation changes can be tricky. Based on the visual tracking-
by-detection paradigm, we benefit from video stream in-
formation provided by cameras placed above doors to in-
fer people trajectories and deduce the number of enter-
ings/leavings at every bus stop. In this way a person detec-
tor estimates the location of the passengers in each image,
a tracker matches detections between successive frames
based on different cues such as appearance or motion, and
infers trajectories over time. This paper proposes a fast
and embeddable framework that performs person detection
using relevant state-of-the-art CNN detectors, and couple
the best one (in our applicative context) with a newly de-
signed Siamese network for real-time tracking/data associ-
ation purposes. Evaluations on our own large scale in-situ
dataset are very promising in terms of performances and
real-time constraint expected for on-board processing.

1. Introduction

Figure 1: Examples taken from our large scale bus passen-
ger dataset. It captures all the variability of real-life situa-
tions: illumination, clutter, appearance, shape, etc.

using embedded hardware with limited CPU resources.
Several bus passenger counting systems already exist,

e.g. electronic ticket validators or floor-located sensors; we
focus on passenger detection based on embedded exterocep-
tive sensors placed above the doors. Many sensor technolo-
gies showed good performance, e.g. radar [9], active cam-
era [19], or laser scanner [3]. Their cost and recent advances
in computer vision motivated our choice to use conventional
and cheap perspective cameras for our application.

With a full view of inside the bus, counting could be
summed up as the detection of all passengers at once when
the bus leaves a stop. In this setting, too many cameras are
needed to cover the whole vehicle which can be from 10 to
18m long. Then, we must settle for fewer sensors placed
above each door: estimating the number of people going
in/out at each stop, in each view, will give insight into the
global passenger flow. Figure 1 provides examples of such
views, taken from our dataset.

To overcome frame-by-frame detector limitations, we

Multiple-people tracking-by-detection methods are 
widely investigated in the literature and find m any appli-
cations. Within public transport, more specifically i n city 
buses, we can study bus lines occupancy rate by counting 
passengers and help the operator to optimaly distribute 
its fleets o f v ehicles. C ounting p assengers independently 
from the ticket validation systems can also provide good 
estimates for frauds. Several market studies show real 
needs for such systems in public transport [14]. Hence, 
there are two main challenges: (i) dealing with highly 
cluttered scenes during rush hour and relatively sparse 
at off-peak hour both with illumination changes, and (ii) 
providing online, real-time and high accuracy performances



perform this task through tracking-by-detection. Dealing
with overcrowded scenes, thus lots of trajectories to man-
age at the same time, becomes one of the main challenges.

Counting passengers using tracking-by-detection im-
plies three steps: (i) detect people on a frame-by-frame ba-
sis, (ii) associate detections between frames to reconstruct
consistent trajectories, (iii) analyse trajectories directions to
determine whether passengers went indoors/outdoors, and
finally count them. We focus on the second step, i.e. associ-
ating detections in the video stream using the outputs of the
best Convolutional Neural Network (CNN) based detector
prototyped for our application.

Multiple-people tracking most often deals with front
views of pedestrians [17, 6]. Due to buses narrowness, tak-
ing such videos from inside the vehicle would lead to drastic
occlusions and thus bad performances. This drawback can
be avoided with zenithal viewpoint cameras placed above
the doors. It then differs from classic applications, e.g. for
pedestrian detection/tracking, as it can be seen in plethora
of public benchmarks/challenges in the literature.

CNN offline learning based methods have proved to be
effective both in terms of object detection and data associ-
ation, but require specific training on goal-related datasets.
No public labelled ones exist in the context of public trans-
port and zenithal indoor point of view, therefore no compar-
ison to public benchmarks can be led and specific trainings
have to be performed. To this end, we acquired and labelled
our own videos on a sufficiently long period of time to get
all the variability, clutter and illumination changes we need
to be challenged with: acquisitions were done and moni-
tored in a city center bus during daylight and night hours,
with a few as well as huge amount of passengers.

Given that the application has to run in real time – or
at least between two bus stops, we must meet the require-
ment of on-board processing with low computing capacity
hardware, close to Jetson TX2-like configuration. It is then
necessary to use compact and high-speed neural networks
while ensuring enough performances on the tasks to per-
form, i.e. detection along with tracking.

As a recap, passenger counting in city buses implies deal-
ing with complex rush hour cluttered scenes involving the
management of many trajectories at the same time, pro-
cessed on platforms with limited CPU resources. Handling
such constraints, especially with the use of greedy, yet very
effective deep learning methods, requires the optimization
of the neural networks used for object detection as well
as data association. In this context, our contributions re-
late to the design of nearly real-time embedded tracking-by-
detection within our applicative context of public transport
and zenithal view, thanks to:

• the comparison of state-of-the-art CNN detectors,

• the prototyping of a fast siamese CNN for detection as-
sociation in the video stream in order to address real-
time constraints: tracking a huge number of targets in
highly cluttered scenes with deep learning methods re-
mains a major challenge,

• the evaluation of such techniques on our large scale
bus passengers dataset, showing state-of-the-art track-
ing performance along with higher frame rates.

2. Related work
2.1. Deep object detection

Visual object detection consists in locating all instances
of particular classes in an image. It has been extremely
well-studied in the literature and deep learning based meth-
ods outperform by far classic approaches using handcrafted
feature extraction. Among them, two types of methods
stand out from the rest:

(i) Region-based methods generate and classify candi-
date areas in the image. The best known detectors
of this kind result from successive improvements of
R-CNN [7], which extracts ≈ 2k region proposals
from the original image, applies a CNN on each re-
gion to get 4096-d feature vectors, and jointly per-
forms SVM classification and bounding box regression
relatively to each region. Faster R-CNN [22] inverts
R-CNN feature extraction and region proposal, and re-
places the latter with a CNN that predicts regions to
pass along to the classification/regression part. From
R-CNN to Faster R-CNN, test-time speed jumps from
49 to 0.2s per image and gains in precision, making it
suitable for nearly real-time applications.

(ii) One-shot methods do not rely on region classifica-
tion but only process the whole image once. Since
its second version, YOLO [20, 21] passes the origi-
nal image into a CNN, reducing input dimensions from
(N ×N × 3) to a (S × S × (B ∗ 5 + C)) output vol-
ume. Each cell of the (S×S) grid is thus described by
(B ∗ 5 + C) channels, i.e. B bounding boxes ∗ 5 pa-
rameters each: [x, y, w, h] coordinates relative to the
bounds of the B designed-by-hand cell anchor boxes,
confidence score for the presence of an object, and the
probability distribution over the C classes to predict.
SSD [16] also provides an end-to-end detection frame-
work taking the whole image as input. It applies a
CNN as feature extractor and adds several layers to
softly reduce dimensions. Each added layer feeds two
more ones: (i) a bounding box prediction layer which
outputs a (S × S × (B ∗ 4)) volume and (ii) a class
prediction layer which outputs a (S × S × (B ∗ C))
volume. Both detectors seem appropriate choices for



real-time applications as they can respectively run at
81 and 46fps for ≈ (300 × 300) input images, with
their initially designed feature extractors. A compara-
tive study [12] demonstrates the benefits of replacing
SSD feature extractor with a newer and more powerful
MobileNet [11] architecture to take a leap forward in
terms of speed, at lower detection performance costs.

Faster R-CNN, YOLO and SSD show great ability to de-
tect people on the Pascal VOC [5] dataset with 79.6, 79.4
and 81.3% of average precision for the person class re-
spectively, depending on the base network used for feature
extraction. Such performances and execution speeds legit-
imize their comparison in our applicative context.

2.2. Detection association and similarity function

Matching targets over successive frames is known as data
association. It is commonly represented as a graph opti-
mization problem [1, 31] where each node is a detection
and each edge is a potential link between them. Solving the
assignment problem consists in minimizing the total associ-
ation cost, i.e. the sum of all the edges of associated nodes,
which can de done with classic approaches like the Hungar-
ian algorithm [13]. The challenge is to define a similarity
function able to generate discriminatory representations, in
order to have the lowest cost value between two similar de-
tections and the highest value between two different ones.

In the domain of pedestrian similarity matching and
re-identification, learning such features with convolutional
based methods outperformed handcrafted ones [15, 28] and
is now widely used. Because it offers good performance
and an online, real-time approach for multi-object tracking
(MOT) based on CNN embedding for similarity learning,
the work of Wojke et al. is in complete agreement with our
applicative context. They propose a cosine metric learning
framework [28], trained on a re-identification dataset and
integrate it in their tracker [29] to compute distinctive fea-
tures for each new detection. More specifically, they train
a network with as many output neurons as there are distinct
identities in the re-identification dataset, then remove these
classification neurons. Thus, they get a structure trained to
take a detection patch as input and generate a 128-d feature
vector as output. Data association is performed by com-
puting (i) the cost matrix of cosine distances for all pos-
sible matchings between existing tracklets and newly de-
tected objects, and (ii) a weighted version of this matrix
based on tracklets motion predictions of a Kalman filter,
which ensures spatial coherence in the image plane. The
minimal cost matching is finally solved by the Hungarian
algorithm [13]. The upper part of figure 3 depicts the re-
identification network used during training.

Similarly to this cosine metric learning framework, many
approaches train classification networks to correctly predict

input images classes among several distinct identities be-
fore removing last layers, thus retarget the network for em-
bedding purposes [24, 25]. As pointed out by Schroff et
al. [23], this technique suffers from poor generalization to
unseen identities: to produce an embedding with a goal of
re-identification does not guarantee its discriminatory na-
ture. A way to directly produce and compare such embed-
dings is to minimize the distance between them thanks to
contrastive loss [4, 8] optimization. It minimizes the dis-
tance between positive feature vectors, e.g. extracted from
two detections of the same person, and keep a minimum
margin distance between negative ones. It is formulated as:

(1− y) 1

2
d2 + y ∗max(0, m− d)2, (1)

with y = 0 if the pair is positive, 1 otherwise. m is the
minimum margin we want between two dissimilar feature
vectors and d is the distance between them. This kind of
approach, trained to find a similarity/dissimilarity between
two comparable inputs, belongs to the group of siamese ar-
chitectures: a network takes two inputs to compare, applies
layers on them, and compute any output function express-
ing their similarity/dissimilarity. The two branches of lay-
ers applied to each input share their weights sooner or later.
Moreover, the size of the inputs being relatively small (a
detection patch is (85 × 85 × 3) in our case), this type of
architecture is really fast, thus attractive in our context.

3. Methodology and implementation

All trainings are led on a workstation equiped with an
Intel Xeon E5-1620V4 / 3.5 GHz processor, 16GB RAM,
and a NVIDIA Titan Xp graphic card. Whenever possible,
speed evaluations are given for a Jetson TX2 platform.

3.1. Large scale in situ dataset

To conduct our experiments, we recorded ≈ 4h30m of
video sequences with a GoPro camera placed above the cen-
tral door of a city bus. We aim to capture as much vari-
ability of scenarios as possible: daylight/night-time scenes,
low/high-density passenger flow, appearance/shape differ-
ences between individuals. We discard sequences without
any passenger, and we undistort and resize all images to
(480 × 360) before labelling them with VATIC [26]. With
almost 350 distinct identities, this dataset captures the main
scope of real-life situations. Table 1 summarizes details
about content and dataset distribution. Figures 1 and 4 show
few examples used for detection and data association.

3.2. Detectors description for further comparison

We first compare the previously cited deep learning
based detectors in our applicative context in order to choose



Name Images IDs Clutter Illum. Variability
Tr

ai
n video_1 15,382 46 Medium (max 4) Daylight Height: small, medium, tall. Hats:

colours (gray, blue, black, white, pink,
green, patterned), types (cap, veil,
beret, with pompom, hood). Hair:
long, short, bald, blonde, brown, red,
gray, white, black. Other: stroller,
scarf, glasses on top of the head, etc.

video_2 18,427 79 Medium (max 3 + s) Late + artificial
video_3 29,889 95 High (max 6 + s) Daylight

Va
l. video_4 9,751 44 Weak (max 3) Daylight

Te
st min_clutter 11,576 37 Weak (max 2) Night artificial

max_clutter 20,353 43 Strong (≈ 10 + s) Night artificial
Total (≈ 1h) 105,378 345

Table 1: Training / validation sets are used for training. We present our results on two test sets: sparsely ("min_clutter") and
highly ("max_clutter") populated scenes, containing from 0 to ≈ 10 people at the same time. IDs indicates the number of
distinct targets, Clutter indicates the scene congestion (Weak < Medium < High < Strong) – s indicates that the bus seats
are also occupied, Illum. describes the illumination variation of the scene (hour of the day, with/without artificial lighting),
Variability enumerates few cases taken from the dataset.

the best one regarding our real-time constraint and perfor-
mance expectations. We put forward a fast and custom
MobileNetv1-based architecture for SSD feature extraction.

Faster R-CNN - Taking advantage of publicly
available pre-trained weights and implementations of
Faster R-CNN1,2, we find two feature extraction configu-
rations that show good performance: ResNet50 [10] and
ZFNet [30], which are placed upstream of the regression
layers. During training, both networks are initialized with
weights pre-trained on COCO and Pascal VOC datasets,
and we use a learning rate decay on plateau strategy starting
at 10−5 for ResNet50 and 10−3 for ZFNet.

YOLO - We compare YOLOv2 [20] combined with
Darknet-19 feature extractor against YOLOv3 [21] with
Darknet-53. Both are loaded with Pascal VOC pre-trained
weights and trained with a learning rate starting at 10−4.
Training is conducted with darknet3.

SSD - For the sake of speed and based on the compara-
tive study led by Huang et al. [12], VGG feature extractor is
replaced with MobileNetv1. Profiling this feature extractor
shows that speed can be improved by removing the batch
normalization (BN) layer applied to each depthwise convo-
lution (cf. figure 2), without notably affecting detection pre-
cision. Because most of the time spent in the detector is lo-
cated in class and bounding box regression layers, the SSD
speed comparison with/without BN shown at section 4.2
does not show significant improvements. However, using
this architecture further with representation learning will
demonstrate real gains in speed, and motivated our choice
to use it in both object detection and siamese contexts in or-
der to remain consistent. As described in table 2, we also
remove the second-to-last original MobileNet layer so as to

1ResNet50: github.com/tensorflow/models/tree/
master/research/object_detection

2ZFNet: github.com/rbgirshick/py-faster-rcnn
3YOLO: pjreddie.com/darknet/yolo

Figure 2: MobileNetv1 consists in stacking a convolutional
block followed by multiple depthwise blocks. The purple
"BatchNorm" block was removed in our modified version.

output large enough feature maps regarding the size of im-
age inputs and objects to detect. Thus, we compare three
different feature extractors coupled with SSD: the original
MobileNetv1, the same architecture without the second-to-
last layer, and the latter without BN. In order to do a fair
comparison of the three architectures, because pre-trained
models only exist for the full configuration, the networks
are trained from scratch on our dataset. We use Pierluigi
Ferrari’s Keras implementation4 of SSD to conduct our ex-
periments. Training is performed with default arguments
for the Adam optimizer, i.e. learning rate of 10−3, β1 = 0.9,
β2 = 0.999 and a plateau learning rate decreasing strategy.

3.3. Detection association with siamese CNNs

Our goal is to propose a study of siamese networks ad-
dressing detection association for MOT purposes within
highly cluttered scenes, while remaining consistent with our
real-time constraint. Our contribution is two-fold: we com-
pare (i) two different feature extraction structures combined
with (ii) two approaches to produce the feature map em-

4SSD: github.com/pierluigiferrari/ssd_keras

github.com/tensorflow/models/tree/master/research/object_detection
github.com/tensorflow/models/tree/master/research/object_detection
github.com/rbgirshick/py-faster-rcnn
pjreddie.com/darknet/yolo
github.com/pierluigiferrari/ssd_keras


Layer type # filters/stride Output size
Input image - 360× 480× 3
Conv block α.32/2 180× 240× 21

Dw conv block α.64/1 180× 240× 42
Dw conv block α.128/2 90× 120× 84
Dw conv block α.128/1 90× 120× 84
Dw conv block α.256/2 45× 60× 168
Dw conv block α.256/1 45× 60× 168
Dw conv block α.512/2 23× 30× 337

5 x Dw conv block α.512/1 23× 30× 337
Dw conv block α.1024/1 23× 30× 675

Table 2: Modified version of MobileNetv1 feature extrac-
tor. α is the width multiplier factor from the original pa-
per [11], which increases/decreases the number of filters for
each layer. Different values were tested and 0.66 appeared
to be a reasonable speed/accuracy trade-off on our dataset.

beddings. Therefore, we propose a fast siamese framework
capable of computing discriminatory representations with
state-of-the-art performance and less computational time.

Based on the work of Wojke et al. [29], we re-train
their re-identification network for similarity learning pur-
poses and compare it against a faster MobileNetv1-based
network. In the paper, Wojke et al. apply convolutions on
an input image, flatten the last (11 × 11 × 128) feature
map, and apply a fully connected layer trained for multi-
classification, where the number of outputs is the number
of distinct identities to classify. We cut the network just be-
fore the flattening layer, thus retrieve the last (11×11×128)
output volume. Similarly, we cut MobileNetv1 structure af-
ter the fifth depthwise convolutional block in order to obtain
a (10×10×128) volume. For speed purposes, we also com-
pare two MobileNetv1 versions, i.e. with/without BN layers
in depthwise blocks (cf. section 3.2). Left side of figure 3
illustrates this feature extractors comparison.

In the original contrastive loss paper [4], the distance
d from equation 1 is the euclidean distance between vec-
tors, but other related works show interest in learning a co-
sine similarity measure in the context of visual object track-
ing [27, 18]; similarly, DeepSORT computes the cost matrix
of data association using the cosine distance between vec-
tors. Based on cosine similarity, we use the angular distance
between vectors as our distance d: two closely related vec-
tors in the embedding space should have an angular distance
near 0, 1 otherwise. The angular distance between two nor-
malized vectors is retrieved from their scalar product.

In order to reduce dimensions of this configuration into
a single feature vector, we compare two techniques: (i) we
flatten the feature map generated by the feature extractor,
e.g. going from a (10× 10× 128) feature map in the case

of MobileNet to a single 12800-d feature vector, and apply
a fully connected layer to project this vector into the 128-d
embedding space; (ii) we drastically reduce the number of
parameters and execution speed of the first technique by re-
placing fully connected layers with global average pooling
and 1x1 convolutions after the feature extractor last feature
map, as described in figure 3.

During training, the siamese CNNs are fed with pairs
of (85 × 85 × 3) image patches – the average size of a
person in our training set. These patches are the resized
outputs of SSD on the training set. Based on the overlap
between patches and ground truth, we can determine the
real identity label of a detection and thus construct posi-
tive/negative pairs as inputs to the siamese network. Train-
ing the latter with real detections instead of ground truth
patches allows the network to see realistic and not perfectly
centered cases. To equally optimize the distance between
positive/negative pairs, it is necessary to produce them in
equal amount. Thus, as a lot of frames in our training set
do not necessarily contain two or more distinct targets, con-
structing positive/negative pairs for siamese learning has to
be done artificially. Positive pairs are generated within a
temporal horizon of [0-300] frames between first and sec-
ond detection, with X ∼ N (µ = 1, σ2 = 60). In this
way, we simulate non-detections and appearance changes.
For each positive pair, a negative one is produced: the first
patch is the same as in the positive pair, the second patch is
randomly picked among all other identities. 5% of the time,
we pick a randomly selected SSD false positive output as
the second negative patch of the pair. Figure 4 shows exam-
ples of positive and negative pairs used during training.

4. Evaluations and discussion

Hereafter, we justify the choice of SSD along with a cus-
tomized MobileNetv1 feature extractor as input to data as-
sociation, and demonstrate performance in line with the lit-
erature, at higher frame rates, for our siamese architecture.

4.1. Evaluation metrics

As it is common for evaluating object detectors, we use
the Pascal VOC [5] Mean Average Precision (mAP) met-
ric which gives intuition on detectors global performance.
This metric computes the average precision for different re-
call values from 0 to 1, over all classes, and thus integrates
information about both false positive/negative errors.

To evaluate our siamese network against other architec-
tures, we integrate them into the DeepSORT tracker and
compute the Multi Object Tracking Accuracy (MOTA) [2].
As it relies on many types of errors (false positives, misses,
mismatches), this metric gives an overall idea of the tracker
ability to compute consistent trajectories over time.



Figure 3: Left side of the solid line: (i) on the upper part, the global training pipeline used in cosine metric learning [28]
and further truncated before the cosine-softmax block to be integrated to DeepSORT tracker [29], (ii) on the lower part, the
siamese pipeline we used to compare feature extractors (DeepSORT base network vs. MobileNet) and output layers. Right
side of the solid line: structure of the two compared output layers. The equal sign between layers means that they share the
same weights. We take the example of DeepSORT base network configuration to show output sizes in gray.

Figure 4: Positive/negative pairs examples used for siamese
CNNs training. Within each quadruplet, positive and nega-
tive pairs are depicted in first and second rows respectively.
The top three quadruplets above the horizontal line show
examples built with two different identities. Pairs built with
false positive detections are shown on the lower part.

4.2. Object detection

Figure 5 shows a comparison between Faster R-CNN,
YOLO and SSD: we can highlight the correlation between
speed and precision. The more precise the detector, the
slower it is. But even if the gain in precision is approx-
imately 10% from SSD to Faster R-CNN with ResNet50,
SSD still achieves about 75% of mAP while being 14.5×
faster, which makes it a reasonable candidate for our em-
bedded application. YOLO is also capable of notable frame
rates with good mAP in its original version, but is still far
behind SSD in terms of speed. It should be noted that be-
cause big architectures like Faster R-CNN do not fit into

Figure 5: Frames per second on Titan Xp vs. Mean Av-
erage Precision. Detectors are tested with different feature
extractors on both min_clutter and max_clutter test sets. We
observe close performances between sets for each detector,
and a correlation between precision and execution speed –
Faster R-CNN + ResNet being the most precise but slowest
detector and SSD the fastest but less precise one.

the Jetson TX2, fps are given on Titan Xp for all detectors.
This comparison corroborates the comparative study led by
Huang et al. on CNN object detectors [12], at least for Faster
R-CNN and SSD, and the execution time of the latter moti-
vated our choice to use it as input to data association.

Table 3 gets into the details of MobileNet feature extrac-
tors comparison for SSD and shows the detector mAP on the
training and validation sets with the three different tested
architectures. Removing the second-to-last layer of Mo-
bileNet feature extractor shows slightly better performance
both on training and validation. It can be due to the fact that
this layer is usually applied with a stride of 2 and makes the
prediction for close objects more difficult (the feature map



Train Val
Feature extractor mAP Fps

Full MobileNet 88.35 83.12 29.95
Custom w/ BN 90.06 87.06 29.72

Custom w/o BN 89.87 86.26 30.95

Table 3: Mean Average Precision (mAP) and frames per
second (fps) of SSD feature extraction architectures, with
width multiplier α = 0.66. Results are presented on train-
ing and validation sets so as not to skew the final SSD eval-
uation against other detectors. Fps are produced on Jetson
TX2. Best results are in bold and underlined.

is two times smaller than in the modified version).
A slight gain in speed on the target platform can also be

observed with the removal of BN layers, but as mentioned
in section 3.2 the major time consumption of SSD is located
in its regression layers. For further experiments in our em-
bedded context, effort should be put on this part.

4.3. Siamese CNNs for data association

As described in table 4, fully connected layers alone ac-
count for the major portion of the whole networks parame-
ters: 2 millions for DeepSORT base network, 1.6 million for
MobileNets (respectively 75 and 97% of the parameters).
Using 1x1 convolutions drastically reduces this proportion
(respectively 8 and 64% for DeepSORT and MobileNets),
scaling memory usage of full structures down by a factor of
1.5 to 2.7 depending on the base network, and thus leading
to faster execution speed. Once integrated to DeepSORT
tracking framework, our siamese networks show equivalent
MOTA performance to the original architecture trained on
our dataset as a re-identification task. However, the archi-
tecture we put forward is 1.7× faster.

The estimated time for computing worst case scenario
feature vectors shows that our siamese 1x1 architecture with
customized MobileNet w/o BN feature extractor is the clos-
est to real-time processing. Such results are very promising
and comfort us in the fact that we can embed a full real-time
system, or at least process with short delay.

We can notice a difference between min_clutter and
max_clutter: it can be partially explained by slightly lower
performance of SSD on the first set, due to a larger pro-
portion of false positives. Moreover, the confidence score
threshold used to determine which detections to track was
arbitrarilly fixed to 0.5 for all sets and configurations. It
would be worth choosing a threshold based on the training
set tracker performance to get more balanced results and
reduce the gap between test sets. This would imply to fine-
tune this threshold over multiple values, accross all training
sets, with all similarity learning architectures.

5. Conclusion
When it comes to online multi-objet tracking-by-

detection, especially with huge number of objects to track
within highly cluttered scenes, deep learning techniques
hardly address real-time constraints. In this paper, we pro-
pose a nearly real-time and embeddable architecture applied
to bus passengers counting with zenithal cameras. To this
end, we first compare state-of-the-art CNN detectors and
optimize the best one to meet our on-board requirements.
Then, to associate detections over successive frames, we
also propose a fast and new siamese architecture show-
ing state-of-the-art performance on our challenging dataset.
Several tracks can be explored: based on our evaluations,
we may focus on the time-consuming detector regression
layers but also get a system-wide overview of passenger
counting to have better insight into achievable speed.
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